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Sonic-boom noise penetrating under a deep ocean is affected by its time-dependent
interaction with the surface waves, which can significantly influence the perceived
sound pressure level and tonal content of the disturbances at depth far greater than
expected from the flat-ocean (Sawyers) model. The present theory assumes a small
surface slope and a high water-to-air density ratio; the ocean surface in the analysis
is modelled by a sinusoidal surface-wave train. The analysis shows that a distinct
acoustic wave mode in the form of a packet of wavelets emerges in the sound field far
below the surface and attenuates with increasing distance in a manner similar to the
cylindrical spreading of monochromatic waves. The latter feature renders the surface
waviness influence an effect of first-order importance, overwhelming the primary noise
field at large depth. Detailed properties of the deep-water wave fields are examined
and illustrated for the case of an incident N-wave, for which an explicit, analytic
solution is obtained. The result reveals a similarity structure of the wave field with
two distinct time scales and the invariance characteristics of the cylindrically spreading
waves, in accord with the group-velocity concept of dispersive waves. An example
is given of the interaction, illustrating the underwater waveform, sound-pressure and
frequency levels.

1. Introduction
Issues of the potential impact of sonic booms on marine widelife were raised recently

for sonic booms generated during military-aircraft and space-launch operations. Most
studies of sonic-boom noise underwater have been based on Sawyers’s (1968) model
which stipulated a flat air–water interface. Cook (1970) elucidated Sawyers’s model
in more detail and Water (1971) confirmed certain qualitative features of Sawyers’s
theory in an experiment with an explosion over water. A more thorough simulation
experiment on the sonic-boom noise penetration into water was undertaken by
Intrieri & Malcolm (1973) in a ballistic range; the attenuation rate of the maximum
overpressure with depth was found to be in agreement with Sawyers’s prediction for
an incident N-wave. Extensive applications of the model have been made to study the
effects of aircraft flight Mach number and sonic-boom waveform by Sparrow (1995)
and Sparrow & Ferguson (1997). These analyses found the noise penetration depth
to be rather limited and the effects unimportant, except near the surface.

† Present Address: Appl. Sci. Lab., Inc. 2211 S. Hacienda Blvd., Suite 205, Hacienda Height,
CA 91745, USA.
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The present study finds, however, that a time-dependent effect arising from the
interaction of an incident sonic boom with a wavy interface, though a secondary
effect near the surface, can significantly alter the perceived sound-pressure level as
well as the tonal content predicted at depth by the flat-ocean model. The effect in
question is central to issues on the audibility and its impact in the short and long
term. An important consideration omitted from the aforementioned works is the
presence of the sea floor in shallow coastal water, on which the disturbances not only
are expected to intensify but may excite sediment waves of comparable or greater
amplitudes (Desharnais & Chapman 1998; Cheng, Kunc & Edwards 2003).

Undersea measurements of a sonic-boom wave field have recently been made
by Sohn et al. (1999); the experiment involved planned supersonic overflights and
shipboard pressure measurements. The waveform data agree well with Sawyers’s
prediction at 30–40 m below the surface, corresponding to one and a half times
the sea-level signature length. Large discrepancies with Sawyers’s prediction appear,
however, at depths of 50 m and beyond. Apart from the high ambient noise level,
inadequacy in the instrumentation and in the analysis procedures are evident from
data recorded and examined at a depth of 50–75 m. Sohn et al.’s field measurements
cannot be used, therefore, to assess the surface-wave influence in question. Moreover,
the flight Mach numbers, reported to be less than 1.25, were too low to allow the
wavy-surface effect to be detectable; this will be made apparent later (cf. § 5.4, and
figure 3).

In this paper we study principally the theory of the (time-dependent) interaction
problem and provide a solution with which the surface-wave influence can be more
explicitly brought out. Examples of applications pertaining to the parameter ranges of
practical interest are studied in Cheng, Lee & Edwards (2001), in which a quantitative
basis for assessing the effect in question is established; the particular problems of
rocket plumes, sea-floor presence and other effects are also examined therein. Similar
results in this study have been presented in preliminary forms in Cheng & Lee (1998).
As well as clarifying several observations in the original works and bringing out
several new features, the following analysis will provide a solution which satisfies the
radiation condition, which was not fully accounted for in the previous works. A more
thorough description and discussion of some parts of the analysis are documented in
the report version of this work (Cheng & Lee 2000). A laboratory study of the wavy-
surface interaction effect has recently been presented in Fincham & Maxworthy
(2001); the experimental measurements substantiate the principal results of our
theory.

2. Preliminary remarks
The interaction model

The acoustic model considered consists of two interacting compressible, inviscid
media, representing air and water. The formulation will assume an extremely large
water-to-air density ratio (ρW/ρA � 1) and a water-to-air sound-speed ratio greater
than unity (aW/aA > 1). As in all work on sonic booms, the overpressure p′ = p − pA

is small compared to the ambient atmosphere pressure pA (i.e. ε = max|p′/pA| � 1).
The maximum surface slope departure from the horizontal, 2πδ, will be assumed to
be small but much larger than the product of ε and the reciprocal of (ρW/ρA) (i.e.
ε(ρA/ρW ) � δ � 1). The analysis addresses the problem of a sinusoidal surface-wave
train interacting with the sonic-boom wave. The wave field reaching the interface
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Figure 1. Sketch illustrating the air–water interface, coordinates, and notation.

will be assumed to propagate with a uniform (or nearly uniform) horizontal velocity
component U (in the negative x-direction observed from a rest frame, cf. figure 1).

One feature that greatly simplifies the modelling of the interaction problem in three
spatial dimensions is the extremely small dimension of the sonic-boom impact zone
in the flight direction compared to its transverse horizontal scale, as depicted by the
sketch in figure 2. This is evident from overpressure contours at sea level determined
in sonic boom analyses (Hayes 1971; Carlson & Maglieri 1972) where the aspect
ratio of the impact zones is as high as 200–500. The problem formulation in this case
may therefore follow the lifting-line approach (as described in Van Dyke 1975) which
reduces the leading-order problem to a two-dimensional one. Thus, in addition to
ε(ρA/ρW ) � δ � 1, the reciprocal of the aspect ratio, (AR)−1, will also be regarded as
being much smaller than the surface slope parameter δ. There is no other restriction
on the relative magnitudes of ε and (ρA/ρW ) with respect to δ, so long as they remain
small compared to unity, as will be explained later.

Anticipated features

The analysis will focus primarily on the reduced two-dimensional problem in which
the wave field underwater is subsonic in that the horizontal (vehicle/wave field) speed
U is less than the water sound speed, i.e. MW ≡ U/aW < 1. Under standard conditions,
this means that the Mach number in the air MA ≡ U/aA remains below aW/aA = 4.53.
The disturbances in this subsonic wave field are expected to attenuate with increasing
depth z. Under a flat ocean, the overpressure from a sonic boom would attenuate
rapidly with depth as z−2 in most cases (Sawyers 1968; Sparrow 1995). Under a
wavy ocean, however, the dominant wave mode produced by the interaction will
appear at large depth in the form of a packet of wavelets; the overpressure of each
wavelet attenuates at a much lower rate as 1/

√
z, in accord with the cylindrical-

spreading rule of monocromatic waves from a line source (see e.g. Landau & Liftshitz
1959). These overwhelm the otherwise primary flat-ocean wave field by virtue of
their much slower attenuation rate. These and other properties reflect the dispersive
character of a deep-water wave field, as will be delineated and made more specific
by the following analysis. A rough water surface is also known to augment sound
transmission from air to water, as has been indicated by analyses (Medwin, Helbig &
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Figure 2. Sketch illustrating coordinate systems and notation in the analysis of the
interaction of a sonic-boom wave and surface-wave train.

Hagy 1973), with supporting experimental evidence. This apparent consistency with
our analysis, however, cannot be taken as direct support of the present theory, since,
unlike the problem at hand, their study stipulated a wavelength small compared to
the signature/pulse length, as well as an unlimited time duration for observing the
rough-sea statistics. The present analysis may nevertheless be regarded as an extension
of Medwin et al.’s (1973) study.

The condition MA < 4.53 for a subsonic underwater wave field corresponds to
the incident ray angle θi > sin−1(aA/aW ) ≈ 12.75◦ associated with the ‘total reflection’
phenomenon in ray acoustics theory (see for example, Tolstoy 1987; Pierce 1991).
The prohibition of acoustic energy transmission under this condition would have
ruled out the existence of a (subsonic) underwater wave field. Recall however that
the ray approximation is inapplicable at a depth comparable to the underwater
signature length, where the crucial input to the deep-water wave field is generated.
In the case of a supersonic wave field occurring underwater, i.e. MW ≡ U/aW > 1 and
MA ≡ U/aA > 4.53, the two-dimensional wave field under a flat ocean would lead to an
uninhibited propagation until three-dimensional effects take over at some large depth.
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Nonlinear, numerical computation

The problem of a sonic-boom wave interacting with a truncated surface-wave train
was studied numerically by Rochat & Sparrow (1997), employing a finite-difference
procedure capable of capturing contact discontinuities. Solutions were obtained for
examples with small wave heights corresponding to δ � 1; however results were
presented only at a depth very small compared to the signature length, where the
overpressure obtained reveals mainly the small, secondary effect, as anticipated.

Underwater audibility

Experiments on sonic-boom effects on marine wildlife (Bowles 1995; Bowles & Stewart
1980) have raised concerns about the sound levels (and rise time) that may cause a
temporary shift in the hearing threshold of pinnipeds and other mammals living on
or near the shore. That the sonic boom noise can be perceived/discerned by marine
mammals under water is similar to concerns about vessel and (undersea) air-gun
noise (Richardson et al. 1995; Greene 1995) and the effects of low-frequency active
and passive sonars (see Munk, Worchester & Wunsch 1995; Au 1997; Frankel &
Clark 1998). Of particular interest in this regard are the documented sound levels
and dominant frequency ranges of whale calls (see Richardson et al. 1995); whether
sonic-boom disturbances can be distinguished from the undersea ambient noise in
these sound-pressure and frequency ranges is another issue that the present analysis
may help to address.

3. The interaction model and reduced equations
3.1. The assumption of high water-to-air density ratio

Basic to the present study is the assumption of an interface separating two inviscid
compressible media, across which the pressure and normal velocity, in the absence
of surface tension, are continuous. As pointed out earlier, the water-to-air density
ratio ρW/ρA will be assumed to be much greater than unity. This ratio, being 773.4
under standard conditions, causes the ocean to behave very stiffly in its response to
an incident sonic-boom wave, with vanishingly small changes in the underwater fluid
velocity u′ and in the interface geometry. The study will employ two sets of Cartesian
coordinates in which the positive z-axis points from the air to water, as indicated in
figure 1.

A Cartesian frame fixed to the fluid in a rest state will be used in the formulation
in § § 3.2, 3.3, whereas the analysis in § 3.4 and the subsequent analysis employ a
frame moving with the sound source at speed U (relative to the rest frame). Pressure
changes are taken to be the difference from the equilibrium value p∞ + ρgz, although
the ρgz contribution in the domain above the water of |z| =O(L′) is negligible. The
analysis will consider a surface-wave train over deep water with a small surface slope
of order δ and wave speed |c| � U . The wind speed near the surface is also assumed
to be small, being not much greater than |c|; this condition appears to be applicable
to the fully developed sea and swell (Bascom 1964). Whereas ε, δ, c, (AR)−1 and
(ρA/ρW ) must all be small compared to unity, the main parametric requirement on
their relative magnitudes is only

(AR)−2, ε(ρA/ρW ) � δ, c/U.

This is to ensure that the time-dependent interaction corrections are the most dom-
inant among the secondary effects under water (at all depth levels) and is explained
at the end of § 3.3.
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3.2. A priori estimates

The extremely stiff behaviour of the water in response to the sonic boom may be
more explicitly delineated with the help of a priori estimates. Subscript symbols A for
air and W for water will be applied to the pressure p, density ρ, sound speed a and
velocity (vector) u. The equation describing the interface in a rectilinear Cartesian
frame is

z = ZW (x, y, t). (3.1)

This surface has a characteristic slope of order δ (2πδ, more precisely), an x-length
scale λ, and a t-time scale λ/c. We shall denote the departure from the equilibrium
state in the absence of the sonic boom by a superscript ◦; a prime is used to denote
the additional departure due to the sonic boom. Utilizing the continuity requirement
for pressure and normal velocity across the interface, and the approximate estimate
|p′| ∼ ρa|u′|, together with the Bernoulli relation, one arrives at a set of order-of-
magnitude estimates for the underwater acoustic-field variables

p′
W = O(p′

A) = O(ερAU 2), (3.2a)∣∣∣∣u′

U

∣∣∣∣
W

,

(
aA

aW

)2 ∣∣∣∣ρ ′

ρ

∣∣∣∣
W

,
1

U
(Z′

W )t = O

[(
ε

ρA

ρW

)]
. (3.2b)

These parametric estimates are confirmed by the internal consistency of the subsequent
analysis. In the absence of the sonic boom, the perturbation quantities from the
equilibrium state underwater are estimated to be

p◦
W = O(δρWc2), (3.3a)∣∣∣∣u◦

c

∣∣∣∣
W

,

(
a

c

)2

W

∣∣∣∣ρ◦ − ρ∞

ρ

∣∣∣∣
W

,
1

c

∣∣(Z◦
W

)
t

∣∣ = O(δ), (3.3b)

where ρ∞ is the upstream density taken as a reference quantity. The estimates of the
orders of p′ and u′ in (3.2) assume a spatial scale of L′ (the signature length) and
a time scale of L′/U , whereas the estimates for p◦ and u◦ in (3.3) are based on the
spatial scale λ and time scale λ/c.

3.3. Key equations; decoupling the interaction effect

For the inviscid problem at hand, the assumption of existence of a velocity potential
for each medium will suffice. With the orders established for ρ◦ and ρ ′ from (3.2),
(3.3), the compressibility correction to the mass conservation equation, namely,

1

ρ

D

Dt
ρ,

can be linearized; thereby the continuity equation in the underwater rest frame can
be reduced to one governing the velocity potentials and the overpressure underwater[

a2
W ∇2 − ∂2

∂t2

](
φ◦ + φ′

p◦ + p′

)
= 0 (3.4)

with terms omitted of a higher order[
δ2

(
c

a

)2

+ ε
ρA

ρW

](
aA

aW

)2

.

The product ε(ρA/ρW ) in the square brackets arises from remainders accounting for
the fluid compressibility. The same equation with aW and ρW replaced by aA and ρA
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holds above water. Owing to the limited vertical length scale considered, effects of
stratification in ρ and a as well as the full nonlinear effect have not been included.

Successive applications of the interface boundary conditions will permit an
unambiguous determination of the interaction effect on the interface geometry, Z′

W ,
although the latter is too small to be of practical significance. In Cartesian coordinates
fixed to the rest frame, this condition for the normal fluid velocity on each side of the
interface z = ZW (x, y, t) may be expressed as

w◦ + w′ =

(
∂

∂t
+ u◦ ∂

∂x
+ v◦ ∂

∂y

)
Z◦

W

+

(
u′ ∂

∂x
+ v′ ∂

∂y

)
Z◦

W +

[
∂

∂t
+ u◦ ∂

∂x
+ v◦ ∂

∂y

]
Z′

W +

[
u′ ∂

∂x
+ v′ ∂

∂y

]
Z′

W (3.5)

where u◦ = ∇φ◦ and u′ = ∇φ′. Accordingly, φ◦ can be decoupled from φ′ and solved
with the first line of (3.5) (dropping w′ on the left) as boundary conditions. By virtue
of the magnitude estimates for the wave field above water and those in (3.1)–(3.3)
underwater, the leading approximation to w′ is seen from (3.5) to be identically zero at
the interface. Thereby Sawyers’s (1968) model is recovered as a leading approximation
to φ′. Namely, at z = 0, for the leading approximation,

∂φ′

∂z
= 0. (3.6)

Applying (3.5) to the interaction problem above the water for the next approximation,
terms with partial derivatives of Z′

W are seen to be smaller in magnitude than those
with partial derivatives of Z◦

W on the second line by order (ρA/ρW ); therefore those
with Z◦

W can be used as a downwash correction to the flat-interface model in the
wave reflection problem above water. The solution procedure for φ′ and p′ above and
under the interface will be more explicitly described below.

From the PDE (3.4) and the boundary condition (3.5), the relative importance of
the several second-order corrections to the underwater wave field may be assessed in
terms of ε, δ, (ρA/ρW ) and (AR)−1. Those other than the time-dependent corrections
of order εδ are expected to be comparable to δ2 and terms proportional to ε2. The
δ2 terms pertain to weak nonlinear corrections to φ◦ and p◦ (of order δ) in the
absence of sonic booms, and their solutions can be decoupled from the wavy-surface
interaction problem, as noted earlier. However, terms proportional to ε2 are nonlinear
corrections to the Sawyers non-wavy model for a flat ocean; they either enter as
corrections from (standard) sonic-boom calculations above water which have already
been included in the surface value of p◦ or φ◦, or as the under-water compressibility
correction in the PDE (3.4), as well as the correction to the water surface geometry
under a sonic-boom overpressure through the boundary condition (3.5). With the
order of magnitudes from § 3.2 given to φ0, p0, φ′, p′, Z0

W and Z′
W in both equations,

the magnitude of terms proportional to ε2 is seen to be of order ε2(ρA/ρW ), which
is much smaller than ε2 itself. On the other hand, the time-dependent interaction
effects in both these equations are seen to have order εδ, while other higher-order
corrections found are of order εδ(ρA/ρW ), εδ(AR)−1, and ε(AR)−2. Therefore, with
ε, (ρA/ρW ), and (AR)−1 being small compared to unity, the parametric requirement

ε(ρA/ρW ), (AR)−2 � δ

stated earlier in § 3.1 ensures the dominance of the time-dependent interaction effect
among the secondary corrections at all depth levels. Owing to the extremely small
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air-to-water density ratio in this requirement, the analysis developed below is expected
to remain applicable even for an ε significantly larger than the slope parameter δ,
therefore allowing a great degree of freedom for laboratory study of the phenomenon
of interest. The simplification of a small c/U will also be made in the analysis.

3.4. The problems above and under the interface

From the above discussion, the interaction problem for φ′ above water may be solved
in the leading and the next orders using the downwash w′ in (3.5) on top of the
interface as boundary conditions, a procedure in common with that for the analysis
in supersonic aerodynamics (Miles 1959; Ashley & Landahl 1968). Underwater, one
may solve for φ′ or p′ (which satisfies the same PDE) with the φ′ or p′ distribution
furnished by the solution above water.

In the following, the Cartesian frame moving with velocity U will be employed.
The incident wave system (from the air/space craft) in the vicinity of the interface is
assumed to be independent of time in this frame. Let φ′

1 and φ′
2 represent solutions

corresponding to the three-dimensional version of Sawyers’s theory and that which
accounts for the time-dependent surface interaction effect, respectively. The PDEs
and boundary conditions at z = 0 for φ′

1 and φ′
2 above water are, respectively[

(1 − M2)
∂2

∂x2
+

(
∂2

∂y2
+

∂2

∂z2

)]
φ′

1 = 0, (3.7a)

∂φ′
1

∂z
= 0 at z = 0; (3.7b)

and [
(1 − M2)

∂2

∂x2
+

(
∂2

∂y2
+

∂2

∂z2

)
− 2

U

a2

∂2

∂x∂t
− 1

a2

∂2

∂t2

]
φ′

2 = 0, (3.8a)

∂φ′
2

∂z
=

[(
∂

∂x
φ′

1

)
∂

∂x
+

(
∂

∂y
φ′

1

)
∂

∂y

]
Z◦

W −
(

∂2φ′
1

∂z2

)
Z◦

W, at z = 0, (3.8b)

where the last term in (3.8b) results from transferring the interface boundary condition
to the plane z = 0. The subscript A has been dropped from φ′

1 and φ′
2, and also from

a and M ≡ U/a, for convenience. The M in (3.7a, b) is greater than unity for the
supersonic wave field above the water considered. The need for the prescription of
(upstream) incident wave data for φ′

1, and the allowance for the (reflected) outgoing
waves in φ′

2, are understood.
Under water, the PDEs for the φ′

1 and φ′
2 and the corresponding overpressure p′

1 and
p′

2 remain in the form (3.7), (3.8), except that M < 1 and a = aW >aA. The subsonic
underwater wave field of p′

1 and p′
2 will be solved as problems with boundary values

prescribed by the surface pressure above water at z = Z◦
w transferred to the reference

plane z = 0:

p′
1 = −

(
ρU

∂

∂x
φ′

1

)
A

, (3.9a)

p′
2 = −

[
ρ

(
∂

∂t
+ U

∂

∂x

)
φ′

2

]
A

−
(

∂p′
1

∂z

)
W

Z◦
W . (3.9b)

Local breakdown of the approximation may occur where ∂p′
1/∂z in (3.9b) becomes

unbounded, as at x = 0, 1 for an N-wave. This breakdown does not affect the solution
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validity elsewhere, as shown in the discussion after § 5.3 below. The wind effect on
p′ could also be accounted for through φ′, in (3.9a), by readjusting the value of M

in (3.7a). This adjustment is unnecessary in practice, since incident wave data from
either sonic-boom computer codes or field measurements must have included the
effect in question. For the present problem with MW < 1 in the absence of a sea floor,
both p′

1 and p′
2 underwater are required to vanish with increasing z.

4. Sawyers’s theory as leading approximation
Sawyers’s (1968) analysis for a flat ocean pertains to a two-dimensional subsonic

wave field in the absence of a sea floor. The resulting wave-field similitude corresponds
to the Prandtl–Glauert rule in aerodynamics and has been applied to assessing effects
of flight Mach number and waveform by Sparrow (1995) and Sparrow & Ferguson
(1997). The result may be expressed more comprehensively as a complex Hilbert
integral

p′ = Im
1

π

∫ ∞

−∞

p′(x1, 0) dx1

x1 − ζ
(4.1a)

where ζ is the complex variable embodying the subsonic Prandtl–Glauert similitude

ζ ≡ x

L′ + iβ
z

L′ , β ≡
√

1 − M2
W (4.1b, c)

and Im denotes for the imaginary part. This elliptic underwater field cannot support
shock discontinuities, resolving rapidly (with distance) any spike-like waveform
prescribed at the interface. For an incident N-wave

p′(x, 0)

p′
max

= 1 − 2x, 0 < x < 1

= 0, x < 0, x > 1,

the result can be more explicitly expressed as

p̃′ =
p′

p′
max

≡ 1 − 2x

π

[
tan−1

(
x

βz

)
− tan−1

(
x − 1

βz

)]
− 1

π
ln

∣∣∣∣ (x − 1)2 + β2z2

x2 + β2z2

∣∣∣∣. (4.1d)

Essential to subsequent discussions is this field’s behaviour at large distance (|ζ | � 1)

p′ ∼ −Im
1

π

∫ ∞

−∞
p′(x1, 0) dx1/ζ + Im

1

π

∫ ∞

−∞
x1p

′(x1, 0) dx1/ζ
2. (4.2)

The second term signifies a (dipole-like) z−2 attenuation rate, to be expected in most
applications since the integral representing the total sonic-boom impulse in the first
term vanishes for most aircraft applications. Cases with a non-vanishing impulse
cannot be ruled out; examples from rocket space-launch applications show that the
integral values are negative and therefore p′ has a sink-like z−1 behaviour (Cheng
et al. 2001). In the following development for the three-dimensional problems with a
high AR, these descriptions provide the leading approximation to the overpressure in
a plane normal to the centreline of the surface impact zone (cf. figure 2).
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5. Surface-wave interaction effect
5.1. Sinusoidal surface-wave train

We consider a sinusoidal wave train on the interface. In the (rest) stationary frame
(x, y, z) fixed to the ocean bottom, the surface elevation is given by

Z◦
W = δλei[(k1x+k2y)−ωt]. (5.1)

In the steadily moving coordinates used in (3.7), (3.8), this surface will be given by
(cf. figure 1)

Z◦
W = δλ ei[k1x+k2y−Ωt] (5.2a)

where the frequency Ω depends on the surface wavenumber and the relative horizontal
velocity through

Ω = ck + Uk1 = k(c + U cosψ). (5.2b)

Note that k = (k2
1 + k2

2)
1/2, ck = ω, and c is the phase velocity of the surface wave in

the rest-frame (x, y, z), and that cosψ is the directional cosine of the wavenumber
vector of the surface-wave train with respect to the x-axis along the flight track
(opposite to the flight direction; cf. figures 1, 2). Since |ψ | � π/2 (cf. figure 2), k1 and
Ω are positive. More general results can be built up from the solution for (5.2) as
Fourier series/integral. The surface wave velocity c is small compared to U or a,
but may nevertheless be retained in the formulation to allow passage to the limit
U/c −→ 0. Henceforth, the real parts of Z◦

W, φ◦, φ′ and p′ are to be understood.
In view of the discussion in § 3.4, the three-dimensional interaction solution can be
studied for a sonic-boom impact zone of very high aspect ratio, for which the reduced
two-dimensional problem is solved in a plane normal to the centreline. A strictly two-
dimensional version of the development was studied earlier in Cheng & Lee (1997).
The relative magnitudes of (AR)−1, ε and δ assumed here permit the application of
(3.7)–(3.9) with x, y, z considered as local Cartesian coordinates.

5.2. Supersonic wave field above water

Leading approximation

We shall assume that the component wave field is supersonic, i.e. Mn = M cos Λ > 1,
where Λ is the local centreline sweep angle. In the local Cartesian frame, with the
x ′-axis normal to the leading edge of the impact zone, x = xLE(y) as indicated by
figure 1, the solution to (3.7) corresponding to the flat-ocean model yields

φ′
1 = f (x ′ − Bnz

′) + f (x ′ + Bnz
′) (5.3)

where Bn = (M2 cos2 Λ − 1)1/2.

Next approximation

Among the corrections to the Sawyers solution φ′
1 are those arising from the three-

dimensional effect, the (media) nonlinear effect and the effect generated from the
interaction of the sonic boom with the wavy ocean surface. The latter will be the
focus of the present analysis for reasons noted earlier. The equation for the surface
depression of the wave train in (5.2a) for AR � 1 is invariant with respect to a local
coordinate rotation:

Z◦
W = δλ ei(k′

1x
′+k′

2y
′)−iΩt , (5.4a)

since k1x + k2y = k′
1x

′ + k′
2y

′, where k′
1 is positive (cf. figure 2).
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For future reference, we observe that

k′
1 = k cos(Λ + ψ), k′

2 = k sin(Λ + ψ) (5.4b)

and that

k1 = k′
1 cos Λ + k′

2 sin Λ, k2 = −k′
1 sin Λ + k′

2 cos Λ. (5.4c)

At Λ = −ψ where, in the moving frame, the surface-wave train is seen to strike the
section normally, k′

2 = 0 and k′
1 = k.

A solution to (3.8a) in a synchronous (mode) form

φ′
2 = φ̂2 eik′

2y
′
e−iΩt (5.5)

is anticipated for the sinusoidal surface-wave train (5.4a). The impermeability
condition (3.8b) becomes one for φ̂2 at z = 0:

∂

∂z
φ̂2 = 2δλ eik′

1x

[
ik′

1

d

dx ′ − B2
n

d2

dx ′2

]
f (x ′); (5.6)

it furnishes an input to the wave field φ′
2 above water synchronous with the oscillatory

surface wave (5.4a). The equation (3.8a) governing φ′
2 above water thereby reduces to

a hyperbolic PDE for φ̂2 in x ′ and z′:[(
M2

n − 1
) ∂2

∂x ′2 − ∂2

∂z′2 − iP
∂

∂x ′ − Q

]
φ̂2 = 0 (5.7a)

with

Mn = U cos Λ/a, P ≡ 2
ΩMn

a
− 2k′

2 tan ΛM2
n, (5.7b, c)

Q ≡
(

Ω

a
− k′

2Mn tan Λ

)2

− (k′
2)

2. (5.7d)

Helpful to what follows are the expressions for P and Q simplified for a small c/U ,
which are more explicitly related to wavenumber k, the impact-zone (local) sweep
angle Λ, and the relative surface-wave train angle ψ:

P = 2kM2
n cos(Λ + ψ), (5.7e)

Q =

(
P

2Mn

)2

− (k′
2)

2 = k2
[
M2

n −
(
1 + M2

n

)
sin2(Λ + ψ)

]
. (5.7f )

Up to the present stage, k, P and Q have not been normalized and have the dimensions
(L′)−1, (L′)−1 and (L′)−2, respectively.

Solution by Laplace transform

Solving for the φ̂2 above water by Laplace transform satisfying (5.6), (5.7) yields
a solution in a convolution integral form, involving the Bessel function of the first
kind, order zero,

φ̂2(x
′, z) = −2

δλ

Bn

∫ x ′+Bnz

0

eik′
1(x

′−x ′
1)

[
ik′

1

d

dx ′ − B2
n

d2

dx ′2

]
f (x ′ − x ′

1)

× ei(P/2B2
n )x ′

1J0

(
α

√
(x ′

1)
2 − B2

nz
2
)
dx ′

1 (5.8a)

where d2f/dx ′2 results from the boundary-condition transfer in (3.8b) and is to be
treated in the Stieltjes sense, and

α ≡
√

P 2 − 4B2
nQ

/
2B2

n. (5.8b)



292 H. K. Cheng and C. J. Lee

The terms under the square root can be re-expressed as

P 2 − 4B2
nQ = 4

(
M2

n − 1
)
(k′

2)
2 + 4

(
Ω

a
− k′

2Mn tan Λ

)2

; (5.8c)

therefore α is real and positive as long as the normal Mach number Mn above water at
the position is greater than unity. For a negligibly small c/U , (5.7e, f ) are applicable
and

α = k

√
M2

n − sin2(Λ + ψ)/B2
n. (5.8d)

The correction to the surface overpressure above water at z = 0 (needed for solving
the inverse problem under water) is, after simplification for small c/U ,

p′
2 = −ρ

D′

Dt
φ2 = −ρUnRe

[
eik′

2y
′
e−iΩt

(
d

dx ′ − ik′
1

)
φ̂2(x

′, 0)

]
, (5.8e)

where Re denotes real part.

Evaluating φ̂2(x
′, 0) for the N-wave

For convenience, x and x ′, will be made dimensionless with L′; k and k′ with (L′)−1;
and f with εUL′. Correspondingly, Ω/a in (5.7c, d) is normalized by the reciprocal
of (L′), as for k. Since the function f ′(ξ ) admits shock discontinuities at ξ = 0, 1
and vanishes beyond 0 <ξ < 1, the integral of (5.8a) will be evaluated separately for
the range 0< x1 < 1 and the range 1 <x1 < ∞. In the subsequent calculation for an
incident N-wave, for which (cf. (5.3))

f ′(ξ ) = (2ξ − 1)1(ξ )1(1 − ξ ), (5.9)

where 1(ξ ) stands for a unit-step function, the overpressure behind the (incident)
front shock is p′ = ρU 2

n ε. The normalized surface value of φ̂2 will be evaluated for
0 <x ′ < 1 as

ϕ ≡ − φ̂2(x
′, 0)

εUnL′δλ
= i

2k′
1

Bn

eik′
1x

′
∫ x ′

0

(2x ′
1 − 1)G(x ′ − x ′

1) dx ′
1

− 4Bn eik′
1x

′
∫ x

0

G(x ′ − x ′
1) dx ′

1 + 2Bn eiµαx ′
J◦(αx ′), (5.10a)

and for 1 <x ′ < ∞, as

ϕ(x, 0) = i
2k′

1

Bn

eik′
1x

′
∫ 1

0

(2x ′
1 − 1)G(x ′ − x ′

1) dx ′
1 − 4Bn eik′

1x
′
∫ 1

0

G(x ′ − x ′
1) dx ′

1

+ 2Bn eiµαx ′
J◦(α|x ′|) + 2Bn eik′

1 eiµα(x ′−1)J◦(α|x ′ − 1|), (5.10b)

where

G(ξ ) ≡ e−i(k′
1−µα)ξ J◦(αξ ), µ ≡ P

2B2
nα

. (5.10c, d)

There are two discontinuities in the surface velocity potential, at x ′ =0 and x ′ =1,
which result from the transfer of the boundary condition for the N-wave.

Omitting the contribution of c/U in Ω , the parameter µ can be explicitly evalua-
ted as

µ = Mn cos(Λ + ψ)/[1 − M−2
n sin2(Λ + ψ)]1/2 (5.10e)
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which approaches Mn as −Λ tends to ψ . Examination of (5.10b) reveals that |ϕ(x, 0)|
vanishes far downwind as 1/

√
x ′, in common with the Bessel function J0(αξ ). The

persistent, oscillatory wave pattern downwind (x > 1) can be found unambiguous by
numerical evaluation, studied in Cheng et al. (2001). For a more general waveform,
the f ′ assumed in (5.9) for the incident N-wave may be replaced by an arbitrary func-
tion regular in x ′ in [0, 1]. The simplicity of the N-wave example will allow an analytic
delineation of the wave-field structure and its singularities, to be made in § 6.†

5.3. Subsonic wave field underwater

Elliptic PDE; synchronous solution

We seek a solution to the inverse underwater problem that can match the surface
overpressure prescribed by the aerial wave field. For convenience, we again omit the
prime and subscript n. After normalizing the overpressure by ερAU 2, and anticipating
a synchronous-type solution for the time-dependent part of the solution we obtain

p′ = p′
1 + δp̂2 eik′

2y
′
e−iΩt (5.11)

where p′
1 is the Sawyers solution in § 3. The PDE and its parameters governing p̂2 are

the same as (5.7a, b, c), including the definitions of P and Q, except that the sound
speed a is aW pertaining to the water, and that Mn < 1; thus, the PDE is now elliptic.

Solution by Fourier transform

Allowing for the upwind influence, we solve the underwater problem for p̂2 via the
Fourier transform in x ′:

FT p̂2(x
′, z) =

1√
2π

∫ ∞

−∞
eiξx ′

p̂2(x
′, z) dx ′ (5.12)

where FT signifies the Fourier transform operator. The existence of the Fourier
transform of p̂2 and its inverse, as well as the applicability of the stationary-phase
method for evaluating the large-z behaviour, will be more critically examined for the
case of an incident N-wave in § 6. The Fourier transform of PDE (5.7a), with

βn =
√

1 − M2
n > 0,

and the assumption of p̂2 vanishing at large |x ′|, yield an ordinary differential equation
(ODE) for FT p̂2 in z: (

∂2

∂z2
− K

)
FT p̂2 = 0, (5.13a)

K ≡ β2
nξ

2 − Pξ − Q, (5.13b)

where K depends on the Fourier variable ξ as well as on Mn, k2
′ and k1

′ or Ω through
P and Q. The solution to this problem that can fulfil the attenuation requirement
with respect to z, is

FT p̂2 = Â(ξ )σ (ξ, z) (5.14)

where Â(ξ ) is FT p̂2 at the reference interface z =0:

Â(ξ ) =
1√
2π

∫ ∞

−∞
eiξx ′

p̂2(x
′, 0) dx ′, (5.15a)

† The results for an incident N-wave can be extended to an unbalanced N-wave by replacing
(2ξ − 1) in (5.9) by [(a + 1)ξ − 1], (2x ′

1 − 1) in (5.10a, b) by [(a + 1)x ′
1 − 1], and the factor 2 of the

last term of (5.10b) by 2a.
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and

σ (ξ, z) =

{
exp(−

√
|K |z), K � 0 (5.15b)

exp(i
√

|K |z), K � 0. (5.15c)

The nonlinear relation among K2, the frequency Ω (through P and Q) in (5.13b),
and the Fourier variable ξ corresponds to the dispersion relation intrinsic to PDE
(3.8a) that connects the wavenumber ξ to the frequency Ω . Equation (5.15b) for posi-
tive K shows an exponentially attenuating behaviour at large z, signifying therefore
a horizontal propagation direction. The associated wave will be referred to as
horizontally propagating wave component for this reason, although results with similar
behaviours have been called ‘evanescent waves’ in optics and other fields. Equa-
tion (5.15c) for negative K indicates an unattenuated sinusoidal behaviour in z; the
associated wave may therefore be called the downward-propagating wave component.

Whereas FT p̂2 at each ξ does not vanish individually at infinitely large z for the neg-
ative K , thanks to the mutual-cancellation (destructive influence) effect of the neigh-
bouring sinusoidal components, their combined effect on p̂2, represented by the inverse
transform, does attenuate with increasing z, as the analysis will confirm. In (5.15c),
a specific choice has been made to ensure that the Fourier transform of the time-
dependent part of p′ (cf. (5.11), (5.14)) admits only downward-propagating waves
away from the interface, giving

FT p̂2 e−iΩt = Â(ξ ) exp
[
i
(
|K |1/2z − Ωt

)]
, (5.16)

where Ω is positive, as noted earlier. It differs from the corresponding result in our
earlier version (Cheng & Lee 1997, 1998) based on

σ = cos
(
|K |1/2z

)
, K � 0.

The solution for p̂2 is obtained by the inverse transform

p̂2 =
1√
2π

∫ ∞

−∞
e−iξxÂ(ξ )σ (ξ, z) dξ (5.17)

which is a functional of FT p̂2 at z =0; Â(ξ ), derivable from FTϕ(x, 0) via (5.8e):

Â(ξ ) = iλ[ξ + k′
1] FT ϕ(x, 0) + FT (�p̂BT), (5.18)

where the subscript BT refers to the quantity resulting from transfer of the interface
boundary condition (to the reference plane z = 0). In the form of (5.17) for p̂2, Â(ξ )
is seen as a surface source function resulting from the wavy-surface interaction. The
last term in (5.18) represents the contribution resulting from the transfer of p1 on
the interface z′ = ZW (x ′, t) to the reference plane z = 0 underwater (cf. (3.9b)), where
∂p′

1/∂z at z =0 does not vanish, unlike that above water.
For an incident N-wave, we obtain†

�p̂BT = −2λ
βn

π
eik′

1x
′
[

− 2 ln

∣∣∣∣1 − x ′

x ′

∣∣∣∣ + (1 − 2x ′)

(
1

x ′ − 1
− 1

x ′

)]
. (5.19a)

Employing an extended version of the Fourier integral theorem with suitable integra-
tion paths (e.g. Carrier, Krook & Pearson 1966, pp. 306–328) we arrive for the N-wave

† The second product term within the square bracket in (5.19a) can be written as −(x ′)−1 −
(x ′ −1)−1; a modification of (5.19a, b) for an unbalanced N-wave is included in Cheng & Lee (2000)
Appendix IV.
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at†

FT�p̂BT = iβnλ

√
2

π
sgn (ξ + k1

′)

[
ei(ξ+k1

′)

(
2i

ξ + k1
′ + 1

)
− 2i

ξ + k1
′ + 1

]
. (5.19b)

The two pole singularities in (5.19a) at x = 0, 1 have resulted from the boundary-
value transfer involving (shock) discontinuities. Their unbound values represent a
local breakdown of the perturbation theory, but do not affect the uniform validity of
the Fourier integral Â(ξ ) to the same order of ZW or λδ considered, and therefore do
not affect the deep-water analysis which will depend explicitly on Â(ξ ). The suspected
discrepancy caused by the non-uniformity in (5.19a) in the Fourier transform of
(5.19b) come from transferring the boundary condition on the surface z = Zw(x ′, y ′, t)
to the reference surface z = 0 by analytic continuation (cf. (3.9b)). The validity of
(5.19b) has been established in Appendix IV of Cheng & Lee (2000) by an asymptotic
matching analysis based on the complete form of (4.1a) for p. The resulting errors
are shown to be much smaller than (ZW )2 or (λδ)2.

5.4. Far-field analysis: signals in deep water

In the following, the deep-water field will be studied by analysing p̂2(x
′, z) for a large

z with the stationary-phase method. While several salient features could be inferred
from some general knowledge of dispersive waves (Whitham 1974; Lighthill 1978), it
is not obvious, however, if such knowledge will yield results applicable directly to the
synchronous solution at hand, p̂2 exp(−iΩt), in which the frequency Ω is, in effect,
fixed by U, k, and ψ . The issue of the consistency of the present results with known
dispersive wave properties will be answered subsequently. Prior to a more thorough
study, the parametric and spatial domains where the significant effect of interest can
occur will first be identified.

Two distinct (Λ, ψ) domains

Owing to the distinctly different behaviour of the kernal function σ (ξ, z) of (5.15b),
depending on the sign of K , the contributions from the integrand to the solution
integral of (5.17) differ widely for K > 0 and for K < 0. The two real roots of K(ξ ) = 0
marking the transitions from the positive and negative K are (cf. figure 3a)

ξ1,2 =
P

2β2
n

∓ 1

2β2
n

√
P 2 + 4β2

nQ, (5.20a)

where the negative sign of (∓) will be identified with ξ1, so that ξ1 <ξ2. For negligibly
small c/u, the more explicit form of P and Q, (5.7e, f ), can be used and the square
root in (5.20a) becomes

S ≡
√

P 2 + 4β2
nQ = 2k

√
M2

n − sin2(Λ + ψ). (5.20b)

This shows that those (unattenuated) sinusoidal components pertaining to ξ1 < ξ < ξ2

can occur only if

M2
n − sin2(Λ + ψ) > 0;

otherwise, the interval [ξ1, ξ2] on the real ξ -axis cannot exist. (Note: Mn < 1 under-
water.) Two parametric domains in (Λ, ψ) must therefore be distinguished for

† Professor S. N. Brown has indicated three alternative ways to arrive at the transformed result
i
√

π/2 sgnξ used here. Note, the principal value of the Fourier integral for 1/x ′ is taken (Titchmarch
1948).
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Figure 3. Boundaries in the (Λ,ψ) domain for different Mach numbers MA, distinguishing
the non-evanescent and evanescent acoustic fields, computed for MA ≡ U/aA = 1.05, 1.5, 2.0
and 3.0.

each Mn:

I. M2
n − sin2(Λ + ψ) < 0 (Horizontally propagating),

II. M2
n − sin2(Λ + ψ) > 0 (Downward propagating).

}
(5.21)

In Domain I, where the interval [ξ1, ξ2] cannot exist on the real ξ -axis, K > 0 for all
ξ components; it may be called the horizontally propagating domain in that the
exponentially attenuating behaviour of (5.15b) with respect to z applies to all ξ -
components. In this domain |p̂2| from the inversion (5.17) attenuates with increasing
z at an extremely high rate. Namely,

|p̂2| <
|C|√

z
exp

(
−|K |1/2

m z
)

for an integrable Â(ξ ), where C is a constant and the subscript m refers to the mini-
mum; therefore the resulting disturbances propagate mainly in the horizontal direction
next to the surface. This behaviour may be inferred with help of the Laplace method
or by the saddle-point method. More significant effects on p̂2 will therefore be found
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in Domain II, in which an interval of real ξ can exist, and the sinusoidal (plane) waves
components corresponding to (5.15c) are the principle contributors to the synchronous
wave field at large z. This second domain will be called downward-propagating domain,
even though there are wave components at ξ < ξ1 and ξ > ξ2 which attenuate exponen-
tially with z.† Figure 3 gives boundaries delimiting the two district domains in (Λ, ψ)
computed for four Mach numbers MA ≡ U/aA = 1.05, 1.5, 2.0, and 3.0 based on the
condition

M2
n − sin2(Λ + ψ) = 0 (5.22a)

together with

Λ = cos−1(aA/U ). (5.22b)

The latter condition is set by the limit of the Mach cone angle. The Domain II of
interest lies in the area for each MA enclosed by the boundary formed by the two
curves from (5.22a) and by the line from (5.22b).

The downward-propagating domain: stationary phase

In Domain II, the inversion of the integral in (5.17) encompasses ranges over both
the downward-propagating (ξ1 <ξ <ξ2) and the horizontally propagating (ξ < ξ1,

ξ2 <ξ ) components. While the contributions at large z from the evanescent segments
exterior to [ξ1, ξ2] is obviously small and secondary compared to that from the interior
of [ξ1, ξ2], their contribution at large z, though negligible, is by no means exponen-
tially small like that from an individual evanescent component. This is because in
approaching the end points of ξ = ξ1 and ξ2 = ξ , the function σ in (5.15b) can no
longer vanish with increasing z, since

|K |1/2 ∼ const|ξ − ξ1,2|1/2.

This leads, under the assumptions of an integrable Â(ξ ) and a finite x ′/z, to a
behaviour at large z comparable to the inverse square of the distance:

|p̂2| ∼ |const|z−2.

Integrable singularities of Â(ξ ) in the form of an inverse square root are anticipated
from the asymptotic behaviour of the J0(αξ ) of (5.10), for which the above estimate
remains applicable except when one of these singularities coincides with the limit
ξ = ξ1 (see § 6.2 below). In this exceptional circumstance, the estimate becomes

|p̂2| ∼ |const|z−1,

where we have made use of
∫ ξ1

−∞ e−iξx e−|K |1/2zA(ξ ) dξ �
∫ ξ1

−∞ e−|K |1/2z|A(ξ )| dξ , with
similar consideration for the integral over ξ2 and ∞. This is still small in magnitude
compared to the contribution from [ξ1, ξ2], to be shown below.

The integral of (5.17) over the remaining integration range corresponding to K < 0
may then be written for large z, subject generally to errors of the order z−2, as

p̂2(x
′, z) ∼ 1√

2π

∫ ξ2

ξ1

Â(ξ ) eig(ξ )z dξ (5.23a)

† Wave components belonging to Domains I and II have been referred to as evanescent and
effervescent waves, respectively, in Cheng & Lee (2000). The downward-propagating domain has
also been called the cylindrical-spreading domain by Cheng, Lee and Edwards (2001).
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where the function g is

g = |K |1/2 − βnηξ (5.23b)

with

η ≡ x ′/βnz. (5.23c)

The downward-propagating components corresponding to exp[ig(ξ )z] dξ would have
contributed to a non-vanishing p̂2 at large z, had there not been the mutual-
cancellation (self-averaging) effect of the neighbouring components in the oscillatory
phase g(ξ )z; the latter is made rapid by the large z. This mutual-cancellation effect
results in a magnitude generally of order Â/g′(ξ )z. The exception is the contribution
from the neighbourhood of ξ∗ where the phase g(ξ ) is stationary, i.e. g′(ξ∗) = 0, and
the destructive interference of the neighbouring wavenumber components is the least,
thereby rendering a much reduced, slower attenuation rate with z. Lighthill (1978)
called this a re-enforcing mechanism in selecting the least self-destructive wave mode.
The root of g′(ξ ) = 0 pertaining to the stationary phase is

ξ∗ =
P

2β2
n

−
√

P 2 + 4β2
nQ

2β2
n

η√
1 + η2

. (5.24)

The standard stationary-phase method under the assumption of a regular Â(ξ ) then
gives along an arbitrary ray of fixed η

p̂2(x
′, z) ∼ Â∗|g′′

∗z|−1/2 exp i
[
g∗z + sgn(g′′

∗ )
π

4

]
(5.25)

where the double prime refers to the second ξ -derivative, and the subscript asterisk
signifies values at the stationary phase ξ = ξ∗. Coefficients g∗ and g′′

∗ are determined
from P, Q and η, and (5.25) can be more explicitly expressed in z̄ = βnz and η = x ′/βnz

as

p̂2(x, z) ∼ S1/2Â(ξ∗)√
2β(1 + η2)3/4

√
z̄

exp i

[
S

2β2
n

(√
1 + η2 − P

S
η

)
z̄ − π

4

]
(5.26)

where the parameters P and S can be evaluated from (5.7e) and (5.20b), respectively.
In the above, the sum under the square root defining S is the same as (P 2 − 4B2

nQ)
in the definition of α in (5.8b), except that P and Q are evaluated here for Mn < 1
underwater. Accordingly, the overpressure due to the interaction attenuates with
increasing depth as 1/

√
z, which corresponds to the cylindrical-spreading rule and is

central to the present theory. Since ξ∗ is bound by ξ1,2 of (5.20), sonic disturbances
reaching the deep water as predicted by (5.26) are limited mainly to the wavenumber
range [ξ1, ξ2] where K < 0, as in a bandfilter.

While inverse square-root singularities in Â(ξ ) are anticipated, they are not expected
to occur within the interval [ξ1, ξ2] and affect the uniform validity of (5.26). This will
be ascertained by examining the analytical solution of Â(ξ ) for the incident N-wave
case later in § 6.2.

In passing, we point out that the same result (5.26) can be obtained alternatively
by the saddle-point method which calls for the construction of an analytic function
for σ (ξ, z) in the complex ξ -plane. This latter is accomplished with a suitable choice
of branch cuts for

√
ξ − ξ1

√
ξ2 − ξ∗.

Wave packet, similitude, and group velocity

With the rapid oscillation for large z, the deep-water result exhibits traits familiar for
dispersive wave in that the signals arrange themselves into a packet of quasi-sinusoidal
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wavelets in a manner determined by the wavenumber ξ∗ which, in this case, is the
ξ value at the stationary phase along the ray η = x/z̄, according to (5.26). The
invariance of the wavenumber along the ray shown above may now provide a more
satisfactory explanation of the p̂2 attenuation rate based on the cylindrical-spreading
rule of the monochromatic waves. The result also implies a similitude in the spatial
structure of the deep-water wave fields and their acoustic spectra, of which η = x/z̄

is a similarity variable. Of theoretical interest is whether (the peak or valley of) the
wavelet propagates at a speed and direction in agreement with the group velocity of
the less restrictive wave system of PDE (3.8a). This will be delineated below.

It suffices for the present purpose to examine the case of Λ = ψ = 0, corresponding to
the two-dimensional case, for which the dispersion relation relating the wavenumbers
k, m and the frequency Ω of a progressive plane wave governed by PDE (3.8)
exp[i(kx +mz − Ωt)] is

Ω = Uk + a
√

k2 + m2 (5.27)

where the k is not to be confused with that used for the surface wavenumber of (5.1)
and (5.2). The two group-velocity components are then given by the partial derivatives
of Ω with respect to k and m as

x

t
= U +

k

M(Ω/a − Mk)
,

z

t
= U

√
(Ω/a − Mk)2 − k2

M(Ω/a − Mk)
(5.28a, b)

where M = U/a. The group-velocity propagation path is therefore

x

z
=

M[Ω/a − Mk] + k√
(Ω/a − Mk)2 − k2

. (5.29)

On the other hand, the synchronous pressure wave is p̂2 exp(−iΩt), with p̂2 furnished
by (5.25) or (5.26) as the result of the stationary phase g′(ξ∗) = 0. The latter condition
identifies the wavenumber value ξ∗ with a specific ray of constant η = x/z̄ in (5.24).
The inverse relation from (5.24) gives η as a function of the stationary wavenumber
ξ∗, yielding

x

z
=

M(Ω/a + Mξ∗) − ξ∗√
(Ω/a + Mξ∗)2 − ξ∗

2
(5.30)

for the ray slope which is the same as the group velocity propagation path (5.29)
above, after identifying −k with the Fourier variable ξ∗.

It remains to see if the constant-phase surface of p̂2 exp(−iΩt) identified with a
ξ∗ also propagates along the ray η = x/z̄ with the group velocity (5.28a, b). With
(5.25) or (5.26), the oscillatory phase along constant η in question can be written for
Λ = ψ =0 as

Ψ = g∗z − Ωt =
Ω

β2a

[
−

(
M − η√

1 + η2

)
x +

βz√
1 + η2

− β2at

]
. (5.31)

Upon substituting η = x/z̄ and absorbing Ψ into a time shift, the contour of constant
Ψ can be brought into the universal form

(x − Ut)2 + z2 = at2. (5.32)

A point on this surface must then propagate along the ray in a manner determined by
the intersection of the curve (5.32) and the line (5.30); the result yields x/t and z/t as
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functions of ξ∗, recognized precisely as the two group-velocity components (5.28a, b)
after identifying k with −ξ∗.

In passing, we note that, whereas the frequency Ω is a constant throughout the
entire synchronous field, the invariance of the wavenumber ξ∗ along the group-velocity
path is valid only under the far-field approximation (resulting from ∂ξ∗/∂x and ∂ξ∗/∂z̄

being both small like 1/z̄).

Significance

Comparing the time-dependent interaction effect p′
2 with the flat-surface solution

p′
1, we arrive at an estimate of their relative magnitude (for fixed k and Mn):∣∣∣∣p′

2

p′
1

∣∣∣∣ = O
(
δz3/2

)
. (5.33)

Accordingly, the surface-wave correction will be comparable to the flat-surface wave
field at

z = O
(
δ−2/3

)
, (5.34)

and become an effect of first-order importance at depths beyond this level.
We point out that the breakdown or non-uniformity of the perturbation procedure

does not occur at large z, since the validity of the equations governing p′
2 (3.8a, b) is

unaffected by the vanishing far-field value of p′
1.

For a high k, the result (5.26), after omitting most unit-order factors, indicates that

|p2| ∼
√

kÂ(ξ∗)√
z̄

. (5.35)

For incident N-waves and other similar waves, including those with unequal fore
and aft shock jumps, it can be shown that

Â(ξ∗) = O

(
1

k

)
(5.36a)

for larger k as will be unambiguously established for the N-wave in § 6.
Therefore |p2| may be scaled like the inverse square root of (kz̄) for k � 1:

|p2| = O

(
1√
kz̄

)
(5.36b)

for incident N-waves and other similar waves. Since kz̄ = 2πz̄/λ, the result (5.36b) for
k � 1 suggests that, if λ� L′, the effect in question is rather localized, and that the
foregoing deep-water analysis is applicable as long as the depth level can be considered
much greater than the smaller of λ and L′. These properties are substantiated by the
more thorough analysis of the function Â(ξ ) for the case of an incident N-wave in
§ 6, as well as numerical studies in Cheng et al. (2001).

We would like to point out that the analysis (5.14)–(5.26) may also be used with
Â(ξ ) determined from a subsonic wave field above water. One may consider for
example the limit U → 0, corresponding to a vanishing Mn both over and under the
water. The time-dependent underwater overpressure p′

2 based on p̂2 of (5.26), with
c �=0 in Q, can be reduced to the form

G(η)r−1/2 exp[i (kr − ωt)], (5.37)
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which is recognized as the cylindrical spreading of (monochromatic) multipole radia-
tion from a source line.

The deep-water result (5.26) may be shown to be applicable also to a large η ≡ x ′/z̄
until η = O(z̄)1/2, i.e. until x = O(z̄)2. The p̂2 behaviour at η or x beyond these ranges
may also be determined after some lengthy analysis. (Cheng & Lee 2000, App-
endix II)

6. An explicit, analytic solution of Â and its singularities

Singularities in the function Â(ξ ), particularly those at ξ1, ξ2 and −k, can be seen
from (5.17)–(5.19). Of special concern are the singularities in Â(z) resulting from
Fourier transforms of the Bessel functions J0(αx), J0(α|x − 1|) and related functions

which give unbounded Â(ξ ) values, and could affect the uniform validity of p′
2. The

following will identify these singularities and other analytical properties of Â(ξ ) on
the basis of the exact result for an incident N-wave.

6.1. An explicit form of Â(ξ )

While the overpressure correction for the boundary condition transfer, �p̂BT, has pole
and logarithmic singularities generated by the front and tail shocks (cf. (5.19a)), its
contribution to FT p̂2(x, 0) or Â(ξ ) obtained in (5.19b) turns out to yield only rather
weak singularities at ξ = −k where FT �pBT vanishes with a sign change in its deriva-
tive with respect to ξ . More critical are the singularities in the main part of FT p̂2(x, 0)
through ϕ(x, 0) (cf. (5.18a)); its Fourier transform may involve those inverse square-
root singularities, compounded further with the presence of discontinuities in f ′(x).
The task of identifying these singularities is made simple by examining the Â(ξ ) for
the incident N-wave, a completely analytic solution of which can be obtained. This
is accomplished by recasting the integrals of (5.10a, b) into ones with the infinite
integration range [−∞, ∞], employing the step (Heaviside) function concept; the final
results were obtained by applying the convolution relation to the Fourier the trans-
forms of these integrals with the help of Cauchy’s integral formula, detailed in
Cheng & Lee (2000, Appendix III). The complete analytical expression of Â(ξ ) for
the incident N-wave example (omitting c/U from (5.18) as in (5.19)) is

Â(ξ ) = iλ(ξ + k′
1) FTϕ(x, 0) + FT(�pBT); (6.1)

the last term has been given by (5.19b) and

FTϕ(x, 0) =
1√

2π
√

R1

√
R2

{
i
4k′

1

Bn

[
ei(ξ+k′

1)

ξ + k′
1

+ i
ei(ξ+k′

1) − 1

(ξ + k′
1)

2
− 1

2

ei(ξ+k′
1) − 1

ξ + k′
1

]

− 4Bn

ei(ξ+k′
1) − 1

ξ + k′
1

+ i2Bn

(
ei(ξ+k′

1) + 1
)}

(6.2a)

where

R1 ≡ ξ + α(µ + 1), R2 ≡ ξ + α(µ − 1), (6.2b)

with µ given in (5.10d).
The result reveals three singularities in Â(ξ ), namely ξA1 =−α(µ+1), ξA2 =−α(µ−1)

and −k′
1; their origin may be traced back to the (secondary) wave reflection from the

extensively long surface wave train, and could have been apparent from the ϕ(x ′, 0)
given in (5.10).

Accurate computation of Â(ξ ) by direct numerical evaluation of the Fourier integral
of p̂2(x

′, 0), (5.15a), implemented with asymptotic expressions of the Bessel function
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Figure 4. An example of Â(ξ ), the Fourier x ′-transform of p̂2(x
′, 0) for an incident N-wave,

revealing its behaviour next to the two singularities at ξ = ξA1, ξA2. The result is for k′
1 = 4,

MnA = 1.5 at Λ+ ψ = 0, for which ξA1 = −12 and ξA2 = −2.4. The presence of the weaker
singularity at ξ = −k′

1 is not apparent. (a) Real part, (b) imaginary part.

for large argument, agrees very well with the analytic expression (6.2). The distribution
of Â(ξ ) exhibiting the behaviour near the two singularities ξA1,ξA2 = −α(µ ± 1) is
shown in figure 4(a, b) for a parameters set of µ, α, k′

1, and Bn determined for the case
of Mn = 1.5, k1

′ =4 and at Λ = −ψ (where the surface wave train strikes the impact
zone normally). The branch points ξA1 and ξA2 in this case are located at ξ = −12 and
ξ = −2.4, respectively, confirming the behaviour seen in figure 4(a, b). The singularity
at ξ = −k′

1 is too weak to be noticeable.

The nature of the three singularities of Â(ξ ) has now been ascertained. In spite of
the prevalence of (ξ + k′

1)
−1 and (ξ + k′

1) in (5.19b), (5.28b), the part (ξ + k′
1) FT ϕ(x, 0)

in Â(ξ ) of (5.28a) is regular at ξ = −k′
1, where Â(ξ ) is also to vanish but has a discon-

tinuity in the second derivative contributed by FT �pBT of (5.19) from the boundary
condition transfer, as noted.

We observe in passing that these singularities do not invalidate the inversion of
Â(ξ )σ (ξ, z) for p̂2(x, z) via a path along the real ξ -axis according to (5.12), since Â(ξ )
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is Riemann integrable. Along the real ξ -axis the product R
−1/2
1 R

−1/2
2 is positive to

the left of ξ = ξA,1, negative to the right of ξ = ξA,2, negatively imaginary above, and
positively imaginary below the barrier/segment connecting ξA,1 and ξA,2.

The behaviour of Â∗ at large k may now be more explicitly shown with (6.1),
(6.2a, b) for the incident N-wave as

Â(ξ ; k) = Â(ξ̄∗; k) = D∞(ξ̄∗)
1 + eik(1+ξ̄∗)

k
, (6.4a)

D∞(ξ̄∗) = 2
√

2π

[
1 + B2

n(1 + ξ̄∗)

Bn

√
R̄∗

1

√
R̄∗

2

+ iBn sgn (1 + ξ̄∗)

]
, (6.4b)

where ξ̄∗ ≡ ξ∗/k, R̄∗
1 ≡ R∗

1/k and R̄∗
2 ≡ R∗

2/k are rescaled values of ξ, R1 and R2 at
ξ = ξ∗, and become independent of k. The underwater properties of |p′

2| at large k

anticipated earlier in § 5 are thereby established for the case of an N-wave.
For a very low k corresponding to the limit k → 0, or λ→ ∞, the Â(ξ ) distribution

from (6.1), (6.2a, b) reduces to one that is precisely the Fourier transform of the quasi-
steady part of the aerial solution p̂2 = f2(x + Bz) at z = 0 determined by the boundary
condition (3.8b) or (5.6).

6.2. The singularities and zeros of Â: solution validity

The question of whether the deep-water result, (5.24a), in which A(ξ∗) explicitly
appears, could be affected by the foregoing singularities must be examined. For, if
these singularities were to occur within the range ξ1 <ξ <ξ2 for deep water, additional
stationary-phase treatments would be needed. There are also ξ -values at which Â and
the deep-water p2 envelope vanish.

The function Â(ξ ) will remain regular within the interval [ξ1, ξ2] if ξ1 can be shown
to be greater than ξA1, ξA2 and −k′

1. Analytical and numerical studies confirm that, in
the domain of Λ, ψ and MnA where the foregoing underwater analysis is applicable,
−k′

1 is bound by ξA1 and ξA2. It remains to ascertain if

ξA2 < ξ1, (6.5)

which will ensure that the three singularities of Â(ξ ) cannot affect and invalidate the
deep-water result (5.24). For this purpose, we examine the value of a function of MnA

and ϑ ≡ Λ + ψ , which is a normalized form of (ξA2 − ξ1):

F (ϑ; MnA) ≡ (1 − σ 2MnA)
(
M2

nA − 1
)
(ξA2 − ξ1)

≡ −M2
nA(1 − σ 2) cos ϑ +

(
1 − σ 2M2

nA

)√
M2

nA − sin2(ϑ)

+
(
M2

nA − 1
)√

σ 2M2
nA − sin2(ϑ) (6.6)

and ascertain if F remains negative in the domain of interest as required by (6.5).
In either the limit of vanishing ϑ or vanishing (MnA − 1), F is readily seen to be

less than zero. For each MnA, the maximum of F occurs at ϑ =0, i.e. ∂F/∂ϑ = 0 and
∂2F/∂ϑ2 < 0; The location of the impact zone where ξA2 gives the closest approach
to ξ1 is therefore at ϑ = 0, whereas the span stations with the largest negative F or
(ξA2 − ξ1) are found in the limit Λ + ψ = sin−1(σMnA) corresponding to the square-
root singularity of F (ϑ, MnA) in (6.6). These properties substantiated by extensive com-
putation of F (ϑ; MnA) for several Mach numbers confirm that the inequality ξA2 < ξ1
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indeed holds. The conclusion from the foregoing discussion may therefore be sum-
marized by the inequalties

ξA1 < −k′
1 < ξA2 < ξ1 < ξ2 (6.7)

Hence, these three singularities of Â cannot invalidate the foregoing deep-water
analysis, (5.20)–(5.26), in which the stationary phase occurs well inside [ξ1, ξ2]. Some
influence of singularities in Â(ξ ) is expected in the wave field at a finite depth,
nevertheless. Other Â(ξ ) behaviours for the N-wave may also be of interest. The
third singularity, namely ξ = −k′

1 = −k cos(Λ + ψ), is interesting in that the function

Â(ξ ) actually vanishes at ξ = −k′
1 with a rather weak singularity. There are ξ -values,

however, at which −iλ(ξ + k′
1) FT ϕ(x, 0) and FT �p̂BT both vanish and so will Â(ξ ).

Some of these zeros occur within [ξ1, ξ2] and will therefore reveal their presence in
the waveform envelope for deep water. The location of these zeros in the ξ -range, or
in the η-range (via (5.24)), can be determined from the condition for the vanishing of
FTϕ(x, 0). Detailed examination shows that the set of zeros of Â(ξ ) is given by the
origin of ν = ξ + k′

1 (cf. (6.2a)) together with the intersection of (ν/2) and tan(ν/2).

The vanishing of |Â(ξ )| at the intersection of ν/2 with tan(ν/2) provides a concrete

basis for explaining and predicting the zero-crossing points of Â(ξ ) in figure 4(a, b).
In particular, the locations where |Â(ξ )| = 0 shown for the example k = 4, MnA = 1.5
and Λ +ψ = 0 are found to be closely identified with ξ = −7.20, −4, 5.42, 11.7 and
18.0. Note that Â(ξ ) = 0 requires the vanishing of both the real and imaginary parts
of Â, therefore some of the zero-crossing points appearing in figures 4(a) and 4(b)
are not the zero in question. One may also note that not the entire family of the
zero-crossing ξ -values can be expected to effect wave-envelope quenching in deep
water through the Â(ξ∗) in (5.24), since the range of ξ∗ is restricted by ξ1 and ξ2.

7. Acoustic pressure and energy spectra in the rest frame
The study in the last two sections delineates the waveform at large z in the moving

frame. The corresponding waveform and frequency spectrum in the rest frame are
nevertheless of practical interest; some of their properties will be examined below.

7.1. Time-dependent description in a rest frame

With the normalized time t̃ = Ut/L′, and other dimensionless variables and parameters
unchanged, the x ′-coordinate in the moving frame is related to the x-coordinate and
time t̃ ′(= t̃) through

x = x + t̃ , y = y, (7.1a)

and

x ′ = x cos Λ − y sin Λ, y ′ = x sin Λ + y cos Λ, (7.1b)

where x and y are taken as local Cartesians. It is convenient to locate the origin of
the reference station in the rest frame at x = y =0 and interpret η in the rest frame
to be a normalized time at each depth level z̄:

η ≡ x ′

z̄
=

t̃ cos Λ

z̄
. (7.2a)

The synchronous-time factor in (5.2a), (5.11) may now be expressed as

e−iΩt = exp[−ik(cos ψ)t̃]. (7.2b)
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In terms of the normalized time η, the overpressure p2 from the interaction, with
p̂2(x

′, z) = p̂2((η, z̄)), may be expressed as

p2 = p̂2((η, z̄))e−i cosψ secΛkηz̄ (7.3)

where ηz̄ may be identified with t̃ cos Λ or x ′.

7.2. Fourier transform of p2 with respect to time: acoustic energy spectral density

With p2 given above, we shall examine its Fourier transform with respect to time

Ft(p2) ≡ 1√
2π

∫ ∞

−∞
eiω̄t̃p2 dt̃ (7.4)

where ω̄ is now a dimensionless Fourier t-transform parameter, recognizable as a
radian frequency normalized by U/L′ (as for Ω). This is recognizable also as the
same as the Fourier x ′-transform of p̂2(x

′, z̄) with the Fourier variable ξ therein
replaced by

Ω̄ ≡ (ω̄ − Ω) secΛ + k′
2 tan Λ

= ω̄ secΛ − k cos(Λ + ψ). (7.5a)

Namely,

Ft(p2) =
secΛ√

2π

∫ ∞

−∞
eiϑx ′

p̂2(x
′, z̄) dx ′

= Â(Ω̄)σ (Ω̄, z) secΛ (7.5b)

where, according to (5.14) and (5.20), the function σ is exp(i|K(Ω̄)|1/2) for ξ1 <Ω̄ < ξ2,
and is exp(−|K |1/2z̄) otherwise.

The absolute value of Ft(p2) expressed as a function of ω̄ may be referred to as
the acoustic-pressure spectrum and is to be evaluated for the present problem as

|Ft(p2)| = |Â(Ω̄)||σ (Ω̄, z)| secΛ. (7.6a)

Its square, |Ft(p2)|2, represents an acoustic energy flux as a function of ω̄ and may
be called the acoustic energy (exposure) spectral density, following a convention in the
acoustic literature. The rationale for this notion may be found in its formal relation
with the total energy of an acoustic pulse via the convolution∫ ∞

−∞
|p2|2 dt =

∫ ∞

−∞
|Ftp2|2 dω̄, (7.7)

referred to as the (total) acoustic (energy) exposure (Pierce 1991; Tolstoy & Clay 1966,
1987; Medwin & Clay 1998). The convolution relations for p2 in (7.7) and in (7.8)
below are applicable also for the real part of p2.

We noted from (6.2) that Â(ξ ) has inverse square-root singularities at ξ = ξA1, ξA2

and does not vanish as ξ → ∞. Therefore |Ft(p2)| and |Ft(p2)|2 for z = 0 are un-
bounded at Ω̄ = ξA1, ξA2 and non-integrable in the limits |ω| → ∞ (apart from being
non-integrable at Ω̄ = ξA1, ξA2 for |Ft(p2)|2). This suggests that an infinite amount of
energy has been extracted from the incident sonic-boom wave by the infinite wave
train of our model since the interaction has begun long ago at t = −∞. The solution
of p2 as well as |p2| at z �=0 underwater is nevertheless finite and regular since Â(ξ )
under the inverse Fourier transform of (5.17) is integrable.

Owing to the non-integrability of |p2|2 and |Ft(p2)|2 noted above, the total exposure
integral (7.7) is generally meaningless but is nevertheless meaningful in deep water,
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for which the acoustic energy associated with the interval [ξ1, ξ2] remains unfiltered,
with interesting consequence.

7.3. Deep-water signature in the rest frame

For deep water, the overpressure p2 of (7.3), with p̂2(η, z̄) given by (5.26), yields a time-
domain wave packet in the rest frame described by the slow time variable η = t/z̄ secΛ

and a fast time variable proportional to z̄, which is the oscillatory phase itself. While
the wave packet envelope is modulated through η, the modulation in the oscillatory
phase is characterized by a frequency downshift, i.e. the oscillation frequency decreases
with increasing time during the sound source passage, as anticipated from Doppler’s
principle. This is most readily seen in the case of Λ = ψ =0, for which, with Â(ξ∗) =
Â((ξ, z̄)),

p2 ∼
√

kMwÂ((η, k))

βw(1 + η2)
3/4

(z̄)1/2
exp i

[
kz̄

βw
2
(Mw

√
1 + η2 − η) − π/4

]
. (7.8)

Recall that ξ∗ is the stationary-phase value of ξ determined by η in (5.24). Therefore,
Ft(p2) in (7.5) as a function of ω̄ through ϑ must also be taken as a function of the
normalized time η through Ω̄ = ξ∗(η). This can be shown to be valid by evaluating
Ft(p2) directly from the deep-water result of p̂2, (5.24). Therefore the spectrum in this
case carries a time record for Ft(p2), revealing how the complex function Ft(p2) has
evolved since time began at t = −∞. The frequency ω̄ of the spectrum corresponding
to Ω̄ = ξ∗(η) may hence be denoted by ω̄∗(t) and possesses a genuine physical meaning
as an instantaneous frequency which varies on a time scale comparable to the pulse
duration. It can be readily shown to be the rate (of decrease) of the (rapidly) oscillating
phase of p̂2 at t in deep water, with the help of (5.26) with (7.2b).

It follows from (5.26) with (5.24) that∫ ∞

−∞
|p2|2 dt̃ = z̄ secΛ

∫ ∞

−∞
|p2|2 dη

= secΛ
S
2β2

n

∫ ξ2

ξ1

|Â(ξ∗)|2
(1 + η2)3/2

(
dη

dξ∗

)
dξ∗ = secΛ

∫ ξ2

ξ1

|Â(ξ∗)|2 dξ∗. (7.9a)

Hence, at large z̄, and noticing that |Ft(p2)| = secΛ|Â(ϑ)|, we arrive at∫ ∞

−∞
|p2|2 dt̃ =

∫ ω̄2

ω̄1

|Ft(p2)|2dω̄ (7.9b)

where the two integration limits can be determined from (7.5a) with (5.7e) and (5.20a)
as

ω̄1,2 = cosΛξ1,2 + k cos(Λ + ψ) cos Λ

=
k cos Λ

β2
n

[
cos(Λ + ψ) ∓

√
cos2(Λ + ψ) − β2

n

]
> 0. (7.9c)

Therefore, the magnitude squared of the Fourier x ′-transform of p̂2 at the sea level
(z =0), with the argument ξ therein replaced by Ω̄ , becomes the acoustic exposure
spectral density in deep water. Comparing (7.9b) with the formal integral relation
(7.7), not only are the |Ft(p2)|2 made more explicit, and the frequency range limited
to only [ω̄1, ω̄2], but, unlike (7.7), the total energy exposure reaching deep water is
shown to be finite and depth independent (for a sufficiently large z̄).
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Figure 5. An example of the underwater overpressure waveform produced by an N-wave with
MA = 1.5, surface-wave wavenumber k = 4, maximum wave slope δ = 0.025, sea-level signature
length L′ = 300 ft, and max. sea-level overpressure 2 p.s.f., at two depth levels: (a) zL′ = 150 ft
and (b) zL′ = 1500 ft.

8. An example
Before closing, an example is shown to illustrate the surface-wave effect on sonic-

boom penetration depth, and the perceivable sound level, frequency range and
waveform characteristics. While more extensive application studies pertaining to much
wider parameter domain are documented in Cheng et al. (2001), this example suffices
for indicating the significant wavy-surface influence that will affect the noise audibility
issue of interest. The results were obtained for an N-wave of surface Mach number
MA = 1.5 incident upon a sinusoidal surface-wave train with surface wavenumber
k = 4 and a maximum wave slope δ = 0.025. The study assumes a reference length
L′ = 300 ft (∼ 90 m) not far from the signature length of a typical supersonic transport,
and a maximum overpressure on the otherwise flat surface of 2 pounds per square
feet (p.s.f). Overpressure waveforms shown in figures 5(a, b), were computed from the
inverse Fourier transform of the product Âσ , using the Â for MA =1.5 and k = 4 shown
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earlier in figures 4(a, b) for two depth levels: 150 ft (z = 0.5) and 1500 ft (z = 5) directly
under the flight track (Λ = 0). It is also assumed that the surface-wave propagation
direction aligns closely with the flight track in this case (ψ = 0). The examination also
affords an opportunity to compare with results from Sawyers’ flat-surface model and
from the far-field formula (7.8) applicable to deep water.

Whereas the wavy-surface interaction effect is expected to be small and secondary
to Sawyers’s prediction at depth levels comparable to the signature length (z = O(1)),
the data from the time-dependent wavy-surface effect p′

2 (dotted line) shown in
figure 5(a) for z = 0.5 is far from being a secondary quantity even at a depth of
half of the signature length. The resultant overpressure p′ = p′

1 +p′
2 (thin solid line)

therein is seen to be more than double the flat-surface value p′
1 (solid curve) at the

peak, with noticeable undulations ahead of and behind the peak. At a depth level five
times the signature length (z = 5), p′

2 takes the dominating form of a wave packet,
overwhelming the flat-surface waveform p′

1, as predicted by the theory. Figure 5(b)
compares the resultant overpressure p′ with the Sawyers solution p1 at z = 5; the
p′

2 at this depth is too close to be distinguishable from the p′ at this depth and is
not included. According to this calculation, the audible sound level from the incident
N-wave at z = 5, by virtue of its interaction with the surface-wave train, is not low; the
averaged peak level of the wavelets over the 4 s (pulse) duration shown is well above
0.02 p.s.f. ∼ 120 dB (re 1 µPa) with the maximum peak level slightly above 0.10 p.s.f.
∼ 134 dB (re 1 µPa).† The sound frequency from the nearly monochromatic, sinusoidal
wavelets, as inferred from the time interval between peaks, is seen to fall in the near
infrasound range, varying from an average of 5 Hz before the maximum peak to an
average of 3 Hz after the maximum peak. The far-field formula (7.8) has been applied
to determine the deep-water waveform at z =5 in this case; the result is graphically
indistinguishable from p′

2 of figure 5(b) and is therefore not shown.
Since the p′

2 magnitude at z =5 is scaled by the surface-wave slope δ, the results in
figures 5(b) for δ = 0.025 can be used to indicate that a sound pressure levels above
120 dB (re 1 µPa) may still reach the same depth even for a surface-wave slope five-fold
smaller, i.e. δ =0.005. Waveforms with similar frequency downshift characteristics are
found consistently in examples for higher MA and k, with expected increases in sound
pressure and in dominant frequency (Cheng et al. 2001).

9. Summary and discussion
The foregoing analysis shows that interaction of a sonic boom with a wavy air–

water interface produces time-dependent disturbances which can penetrate much
more deeply underwater than with a (non-wavy) flat-ocean model. The problem is
formulated for a high water-to-air density ratio, and a water-to-air sound speed ratio
greater than unity; a surface-wave train with small slope is considered and the aspect
ratio of the sea-level impact zone (in the sense of § 3.1 and figure 2) is assumed
to be very high. While the overpressure ratio ε is assumed small, no restriction is
required under the parametric requirement in § 3.1 on the relative magnitudes of ε

and the surface slope 2πδ. The analysis is made in a coordinate system moving with
the incident wave field and addresses the time-dependent interaction in which the
primary underwater wave field is subsonic (U cos Λ/aW < 1).

† The dB unit for the sound pressure level is evaluated from dB (re 1 µPa) = 20 log10(|p′|/µPa).
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The study focuses on the problem of an N-wave incident upon a sinusoidal surface-
wave train, for which wave-field features can be delineated analytically and the
solution validity more firmly established. The interaction produces a time-dependent
surface acoustic source corresponding to a surface overpressure with a continuous
wavenumber spectrum. Far below the surface, waves of downward-propagating type
(§ 3.4) dominate and disperse into a wavepacket form. The latter has a similarity
structure with two distinct time scales: at a fixed depth, amplitude and frequency of
the wavelet are seen to vary (among the wavelets) much more slowly than the wavelet
oscillation frequency itself; along a ray of constant η = t/z (in the rest frame) or x/z

(in the moving frame), on the other hand, the amplitude and frequency are found to
be invariant, after being rescaled with 1/

√
z and z, respectively.

Of significance is the 1/
√

z behaviour of the overpressure that attenuates far more
slowly with depth than the corresponding 1/z2 behaviour in the flat-ocean (Sawyers)
model. Thus the surface-wave influence, even though a small secondary effect near
the surface, becomes an effect of first-order importance in deep water and eventually
overwhelms the otherwise primary wave field. This was demonstrated by the example
studied in § 8 and figures 5(a, b) and is substantiated by studies with many other
examples in Cheng et al. (2001), and in laboratory experiment as well (Fincham &
Maxworthy 2001).

Viewed in the moving frame, results from the foregoing analysis for deep water
may be anticipated in part as dispersive-wave properties. For the wave group
propagating far from the source, the individual wave component progresses in a
direction and a velocity determined by the wavenumber ξ∗ of the stationary phase,
and the wave group as a whole disperses into the form of a packet of wavelets,
each of which retains its monochromic characteristics pertaining to ξ∗. The two-
dimensional divergent paths of the neighbouring wavelets must then cause the wavelet
amplitude to reduce with increasing distance, in the same manner as the attenuation
of cylindrical waves from a monochronmatic point source. Thus, the agreement of
our results with general properties expected from dispersive waves, in regard to the
wavenumber invariance (along propagating path) and the group velocity, should not
be unexpected.

Since the frequency in the sound-pressure spectrum in deep water is a function of a
slow time variable, the spectrum of the entire pulse is seen to build up in (slow) time
successively from one (narrow) frequency band to the next during the entire pulse-
passage period (which is many times longer than the sea-level sonic-boom pulse
period). In view of the frequency downshift observed in § 8 and figures 5(a, b), the
higher frequency end of the spectrum will be the first to appear. Thanks to the
frequency/wavenumber cut-off on the non-evanescent waves, the deep ocean serves
as a bandfilter and makes the total acoustic energy exposure (cf. (7.8b)) as well as the
acoustic exposure spectral density, |Ft(p2)|2, finite and depth independent.

Among the parametric requirements expected to be important for field observations
and laboratory simulations are the considerations that distinguish the (Λ, ψ) domain
of interest from the one supporting strictly evanescent waves. The examinations in
§ 5.4 and figure 4 indicate that acoustic signals from wavy-surface interaction may
not be detectable if the flight Mach number MA is too close to unity, or the surface-
wave propagation direction ψ too far from the flight direction. This, together with
the unexpectedly high level of ambient noise, may explain the lack of detectable
wavy-surface effect in Sohn et al.’s (1999) field measurement.

By virtue of the weak nonlinearity in the basic formulation, more general cases
other than the incident N-wave and the sinusoidal surface-wave train can be analysed;
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superpositions of wave trains of different surface wavelengths and horizontal propaga-
tion directions are expected to yield interference pattern, with interesting consequences.

The surface-wave wavelength λ and the reference sonic-boom signature length L′

used in defining the surface-wave wavenumber k = 2πL′/λ vary according to the sea
states and the type of aircraft/space vehicles considered. Taking λ in the range of
20 ∼ 100 m, k for aircraft can be as low as unity and as high as 30, while for rocket
space launch, k can be in the range of 20 to 80 or higher. Apart from k, the sound level
is also controlled by the surface slope parameter δ and the surface Mach number MA.
Examples in wide ranges of k, δ, and MA for incident N-waves and other sonic-boom
waves were examined in Cheng et al. (2001).

This work has been motivated by the need to improve the models for the analysis
of underwater sonic-boom noise which may potentially harass marine mammals.
Noteworthy is perhaps the 10–50 Hz frequency range found in examples in deep
water studied here and in Cheng et al. (2001). This infrasound range is believed to
be the main channel of long-distance calls for Fin and Blue whales and other large
undersea mammals (Richardson et al. 1995; Frankel & Clark 1997). The examples
indicate that sound levels in the range of 100 to 130 dB (re 1 µPa) can be found at
depth down to five signature lengths, which includes the 120 dB (re 1 µPa) that is
an important reference level in marine mammal avoidance behaviour studies (NRC
1992; D’Spain et al. 1995). Of interest in this regard is the tonal-variation found with
the frequency downshift and the long duration of the wave packet at large depth
levels. Finally, it remains to be ascertained whether undersea ambient noise may
significantly affect the signal audibility. The accepted, averaged, ambient-noise level in
deep sea is seen to level off over the 10–50 Hz frequency range at the sound intensity
level of 60–80 dB (re 1 Pa/

√
Hz), depending on ocean traffic and wind conditions

(Wentz 1962; Urick 1983; NRDC 1999; also Munk et al. 1995).† Its effect on the
predicted audible signals will also depend on the exposure time allowed by the hearing
device/mechanism, and shall be investigated.

In closing, we point out that the influence of the sea floor, not treated in this
part of the study, will be an important topic concerning the sonic-boom impact on
shallow coastal water, where the interaction with seismic/elastic waves on the sea-bed
sediment represents an outstanding issue, as suggested in the studies by Desharnais &
Chapman (1998), and more recently, by Cheng, Kunc & Edwards (2004).
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† The 60 ∼ 80 dB (re 1 µPa) in Wentz’s and Urick’s work was presented for data based on the
frequency interval of one (1) Hz. For the signal received from a pulse-duration of 10 s, the effective
ambient noise level must accordingly be raised to 70 ∼ 90 dB (re 1 µPa), which is still well below the
100 ∼ 130 dB (re 1 µPa) range found here.
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